z-logo
open-access-imgOpen Access
A Study of Performance Output of a Multivane Air Engine Applying Optimal Injection and Vane Angles
Author(s) -
Bharat Singh,
Onkar Singh
Publication year - 2012
Publication title -
international journal of rotating machinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.265
H-Index - 33
eISSN - 1026-7115
pISSN - 1023-621X
DOI - 10.1155/2012/578745
Subject(s) - casing , compressed air , rotation (mathematics) , power (physics) , rotor (electric) , internal combustion engine , bar (unit) , turbine , rotational speed , automotive engineering , materials science , mechanics , mechanical engineering , computer science , physics , thermodynamics , artificial intelligence , meteorology , engineering
This paper presents a new concept of the air engine using compressed air as the potential power source for motorbikes, in place of an internal combustion engine. The motorbike is proposed to be equipped with an air engine, which transforms the energy of the compressed air into mechanical motion energy. A mathematical model is presented here, and performance evaluation is carried out on an air-powered novel air turbine engine. The maximum power output is obtained as 3.977 kW (5.50 HP) at the different rotor to casing diameter ratios, optimal injection angle 60°, vane angle 45° for linear expansion (i.e., at minimum air consumption) when the casing diameter is kept 100 mm, at injection pressure 6 bar (90 psi) and speed of rotation 2500 rpm. A prototype air engine is built and tested in the laboratory. The experimental results are also seen much closer to the analytical values, and the performance efficiencies are recorded around 70% to 95% at the speed of rotation 2500–3000 rpm

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom