Redundant Logic Insertion and Latency Reduction in Self‐Timed Adders
Author(s) -
P. Balasubramanian,
D. Edwards,
William Toms
Publication year - 2012
Publication title -
vlsi design
Language(s) - English
Resource type - Journals
eISSN - 1065-514X
pISSN - 1026-7123
DOI - 10.1155/2012/575389
Subject(s) - latency (audio) , reduction (mathematics) , adder , computer science , arithmetic , parallel computing , algorithm , embedded system , mathematics , telecommunications , geometry
A novel concept of logic redundancy insertion is presented that facilitates significant latency reduction in self-timed adder circuits. The proposed concept is universal in the sense that it can be extended to a variety of self-timed design methods. Redundant logic can be incorporated to generate efficient self-timed realizations of iterative logic specifications. Based on the case study of a 32-bit self-timed carry-ripple adder, it has been found that redundant implementations minimize the data path latency by 21.1% at the expense of increases in area and power by 2.3% and 0.8% on average compared to their nonredundant counterparts. However, when considering further peephole logic optimizations, it has been observed in a specific scenario that the delay reduction could be as high as 31% while accompanied by only meager area and power penalties of 0.6% and 1.2%, respectively. Moreover, redundant logic adders pave the way for spacer propagation in constant time and garner actual case latency for addition of valid data
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom