z-logo
open-access-imgOpen Access
Ta/Ti-and Nb/Ti-Mixed Oxides as Efficient Solar Photocatalysts: Preparation, Characterization, and Photocatalytic Activity
Author(s) -
Hussein Znad,
Ming Ang,
Moses O. Tadé
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/548158
Subject(s) - photocatalysis , x ray photoelectron spectroscopy , materials science , calcination , band gap , grain size , visible spectrum , nuclear chemistry , methyl orange , mineralization (soil science) , chemical engineering , catalysis , chemistry , metallurgy , nitrogen , biochemistry , optoelectronics , organic chemistry , engineering
Ta/TiO2- and Nb/TiO2-mixed oxides photocatalysts were prepared by simple impregnation method at different TiO2 : Nb or Ta mass ratios of 1 : 0.1, 1 : 0.5, and 1 : 1, followed by calcination at 500∘C. The prepared powders have been characterized by XRD, XPS, UV-Vis spectra, and SEM. The photocatalytic activity was evaluated under natural solar light for decolorization and mineralization of azo dye Orange II solution. The results showed that Nb/TiO2- and Ta/TiO2-mixed oxides have higher activity than the untreated TiO2 under natural solar light. The maximum activity was observed for Nb/TiO2 sample (at mass ratio of 1 : 0.1), which is characterized by the smallest crystalline size (17.79 nm). Comparing with the untreated TiO2, the solar decolorization and mineralization rates improved by about 140% and 237%, respectively, and the band gap reduced to 2.80 eV. The results suggest that the crystal lattices of TiO2 powder are locally distorted by incorporating Nb5+ species into TiO2, forming a new band energy structure, which is responsible for the absorption in the visible region. Unlike Ta/TiO2, the Nb/TiO2-mixed oxides can prevent the grain size growth of the treated TiO2, which is important to achieve high solar photoactivity

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom