z-logo
open-access-imgOpen Access
Liquefaction Mitigation Using Lateral Confinement Technique
Author(s) -
Waseim Azzam,
Ashraf Nazir
Publication year - 2011
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2012/538274
Subject(s) - liquefaction , pore water pressure , geotechnical engineering , settlement (finance) , penetration (warfare) , acceleration , effective stress , foundation (evidence) , geology , soil liquefaction , materials science , engineering , physics , archaeology , classical mechanics , operations research , world wide web , computer science , payment , history
The exploration of a series of shaking tests on circular model footing with and without cellular confinement constructed around the footing with variable depths and diameters under the effect of variable net bearing stress is studied. The effect of the confinement on the liquefaction time, final settlement, excess pore water pressure, and induced building acceleration were studied. The consequences showed that installing the cell with minimum diameter closer to footing and sufficient penetration depth significantly delayed the liquefaction time. It can be considered as an alternative technique to decrease both the lateral spreading and the final settlement below the foundation during the shaking. The results demonstrated that the cell reduced the excess pore water pressure within the confined zone and the pore water pressure migration outside the confined block where the liquefaction is induced. Moreover, the peak foundation acceleration of the confined footing soil system is reduced compared with the case of without cell confinement

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom