The Numerical Class of a Surface on a Toric Manifold
Author(s) -
Hiroshi Satō
Publication year - 2012
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2012/536475
Subject(s) - mathematics , fano plane , torus , manifold (fluid mechanics) , class (philosophy) , pure mathematics , invariant (physics) , surface (topology) , toric variety , dimension (graph theory) , projective test , geometry , mathematical physics , computer science , artificial intelligence , mechanical engineering , engineering
In this paper, we give a method to describe the numerical class of a torus invariant surface on a projective toric manifold. As applications, we can classify toric 2-Fano manifolds of the Picard number 2 or of dimension at most 4
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom