z-logo
open-access-imgOpen Access
Voltammetric Study of the Copper Pentacyanonitrosylferrate Adsorbed on the Silica Modified with a Poly(propylene)imine Hexadecylamine Dendrimer for Determination of Nitrite
Author(s) -
Devaney Ribeiro do Carmo,
Suelino Gabriel,
Daniela Rodrigues Silvestrini,
Urquisa Oliveira Bicalho,
Loanda R. Cumba
Publication year - 2012
Publication title -
international journal of electrochemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-3537
pISSN - 2090-3529
DOI - 10.1155/2012/527596
Subject(s) - cyclic voltammetry , copper , amperometry , inorganic chemistry , dendrimer , electrochemistry , materials science , adsorption , graphite , silica gel , redox , nitrite , chemistry , electrode , polymer chemistry , organic chemistry , nitrate
Poly(propylene)imine hexadecylamine dendrimer (DAB-Am-16) was anchored on the surface of 3-chloropropylsilyl silica gel and subsequently interacted with copper nitroprusside. The composite was characterized by infrared (FTIR), energy dispersive X-ray (EDX), and cyclic voltammetry. The above techniques confirmed the successful anchoring of the dendrimer on the silica gel modified surface and its interaction with copper nitroprusside. The cyclic voltammogram of CuNPSD was found to exhibit two redox couples with (Eθ′)1 = 0.30 V and (Eθ′)2 = 0.78 V versus Ag/AgCl (KCl=1.0 mol L−1; =20 mV s−1) attributed to the redox processes Cu(I)/Cu(II) and Fe(II)(CN)5NO/Fe(III)(CN)5NO, respectively. The CuNPSD-modified graphite paste electrode was found to show a linear response of 5.0×10−4 to 9.0×10−3 mol L−1 for nitrite determination with a detection limit (DL) of 3.8×10−4 mol L−1 and an amperometric sensitivity of 25.0 mA/mol L−1. The CuNPSD-modified graphite paste electrode was found to show a good electrochemical stability and an excellent response to the electrocatalytic oxidation of sodium nitrite

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom