A Comparative Study of Data Transformations for Wavelet Shrinkage Estimation with Application to Software Reliability Assessment
Author(s) -
Xiao Xiao,
Tadashi Dohi
Publication year - 2012
Publication title -
advances in software engineering
Language(s) - English
Resource type - Journals
eISSN - 1687-8663
pISSN - 1687-8655
DOI - 10.1155/2012/524636
Subject(s) - computer science , software , wavelet , reliability (semiconductor) , parametric statistics , algorithm , software quality , goodness of fit , nonparametric statistics , data mining , statistics , wavelet transform , count data , poisson distribution , mathematics , artificial intelligence , software development , machine learning , power (physics) , physics , quantum mechanics , programming language
In our previous work, we proposed wavelet shrinkage estimation (WSE) for nonhomogeneous Poisson process (NHPP)-based software reliability models (SRMs), where WSE is a data-transform-based nonparametric estimation method. Among many variance-stabilizing data transformations, the Anscombe transform and the Fisz transform were employed. We have shown that it could provide higher goodness-of-fit performance than the conventional maximum likelihood estimation (MLE) and the least squares estimation (LSE) in many cases, in spite of its non-parametric nature, through numerical experiments with real software-fault count data. With the aim of improving the estimation accuracy of WSE, in this paper we introduce other three data transformations to preprocess the software-fault count data and investigate the influence of different data transformations to the estimation accuracy of WSE through goodness-of-fit test
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom