PTH Assays: Understanding What We Have and Forecasting What We Will Have
Author(s) -
José Gilberto H. Vieira
Publication year - 2012
Publication title -
journal of osteoporosis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 19
eISSN - 2090-8059
pISSN - 2042-0064
DOI - 10.1155/2012/523246
Subject(s) - parathyroid hormone , radioimmunoassay , monoclonal antibody , amino acid , peptide , antibody , amino terminal , medicine , biochemistry , computational biology , peptide sequence , chemistry , immunology , biology , gene , calcium
Parathyroid hormone (PTH) assays have evolved continuously for the last 50 years. Since the first radioimmunoassay was described in 1963, several assays based on immunological identification have been published (first generation assays). The routine assays used nowadays are immunometric “sandwich-type”. They are based on two different monoclonal antibodies, one amino-terminal and the other carboxyl terminal specific. These second generation assays are widely available and adapted to most of the automation platforms. The specificity of the amino terminal antibody defines if the immunometric assay measures only the bioactive PTH circulating form (including the first amino terminal amino acids) or the “intact” PTH, which includes, besides bioactive PTH, other “long” carboxyl-terminal forms, for example, 7–84-PTH. Assays for “intact” PTH are the most commonly available and the potential advantage of the bioactive PTH assays is still debatable. Next generation of assays will be based on different principles, mainly mass spectrometry in samples submitted to a prior purification and fragmentation steps. These assays will provide information about the whole spectra of PTH peptides in circulation, with a significant increase of the information regarding this biologically important peptide hormone
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom