z-logo
open-access-imgOpen Access
Printed Internal Pentaband WWAN Antenna Using Chip-Inductor-Loaded Shorting Strip for Mobile Phone Application
Author(s) -
YongLing Ban,
Shun Yang,
LeWei Li,
Rui Li
Publication year - 2012
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2012/516487
Subject(s) - printed circuit board , antenna (radio) , loop antenna , electrical engineering , strips , footprint , engineering , mobile phone , inductor , electronic engineering , antenna factor , acoustics , antenna measurement , telecommunications , physics , materials science , voltage , paleontology , biology , composite material
A compact size on-board printed antenna using capacitive coupled-fed excitation to generate multiple resonant modes for penta-band WWAN operation (GSM850/900/GSM1800/1900/UMTS2100) is presented in this paper. The proposed antenna occupies only a small footprint of 15 × 25 mm2 on one corner of the circuit board and a protruded ground of 10 × 15 mm2 is displaced with close proximity to the antenna portion. The proposed antenna has a very simple structure which is composed of two separate strips: a loop strip with an inserted chip inductor and an L-shaped feeding strip. The loop strip is shorted to the ground and generates a resonant mode at 890 MHz to cover the GSM850/900 band (824–960 MHz) while the feeding strip contributes to the GSM1800/1900/UMTS210 band (1710–2170 MHz) operation. With such a small size, the proposed antenna can achieve compact integration on the circuit board of the mobile phone, thus the proposed scheme is quite suitable for the slim mobile phone application. Good agreements between simulations and measurements are obtained. Details of proposed antenna are presented and some key parameters are studied

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom