z-logo
open-access-imgOpen Access
Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack
Author(s) -
Pattabiraman Krishnamurthy,
Ramya Krishnan,
Dhathathreyan Kaveripatnam Samban
Publication year - 2012
Publication title -
international journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.309
H-Index - 25
eISSN - 1687-8078
pISSN - 1687-806X
DOI - 10.1155/2012/512803
Subject(s) - membrane , materials science , nafion , composite number , stack (abstract data type) , composite material , polytetrafluoroethylene , thermal stability , electrolyte , electrode , chemical engineering , electrochemistry , chemistry , engineering , biochemistry , computer science , programming language
Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE) matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness) were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness). The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom