z-logo
open-access-imgOpen Access
The Principal Parametric Resonance of Coupled van der Pol Oscillators under Feedback Control
Author(s) -
Xinye Li,
Huabiao Zhang,
Lijuan He
Publication year - 2012
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2012/507378
Subject(s) - van der pol oscillator , control theory (sociology) , oscillation (cell signaling) , physics , parametric statistics , position (finance) , amplitude , relaxation oscillator , resonance (particle physics) , relaxation (psychology) , parametric oscillator , sign (mathematics) , periodic function , mathematics , nonlinear system , mathematical analysis , quantum mechanics , control (management) , computer science , voltage , psychology , social psychology , statistics , finance , artificial intelligence , voltage controlled oscillator , biology , economics , genetics
The principal parametric resonance of two van der Pol oscillators under coupled position and velocity feedback control with time delay is investigated analytically and numerically on the assumption that only one of the two oscillators is parametrically excited and the feedback control is linear. The slow-flow equations are obtained by the averaging method and simplified by truncating the first term of Taylor expansions for those terms with time delay. It is found that nontrivial solutions corresponding to periodic motions exist only for one oscillator if no feedback control is applied although the two oscillators are nonlinearly coupled. Based on Levenberg-Marquardt method, the effects of excitation and control parameters on the amplitude of periodic solutions of the system are graphically given. It can be seen that both of the two oscillators can be excited in periodic vibration with proper feedback. However, the amplitudes of the periodic vibrations are independent of the sign of feedback gains. In addition, the influence of time delay on the response of the system is periodic. In terms of numerical simulations, it is shown that both of the two oscillators can also have quasi-periodic motions, periodic motions about a new equilibrium position and other complex motions such as relaxation oscillation when feedback control is considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom