Hybrid Macroprogramming Wireless Networks of Embedded Systems with Declarative Naming
Author(s) -
Chalermek Intanagonwiwat
Publication year - 2012
Publication title -
international journal of distributed sensor networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 53
eISSN - 1550-1477
pISSN - 1550-1329
DOI - 10.1155/2012/490826
Subject(s) - computer science , flexibility (engineering) , declarative programming , simplicity , set (abstract data type) , distributed computing , programming paradigm , programming language , inductive programming , philosophy , statistics , mathematics , epistemology
Wireless Networks of Embedded Systems (WNES) are notoriously difficult and tedious to program. The difficulty is mostly originated from low-level details in system and network programming. This includes distributedly managing and accessing resources from a dynamic set of nodes in hostile and volatile networks. To simplify WNES programming, we propose Declarative Resource Naming (DRN) that abstracts out the mentioned low-level details by programming a WNES in the large (i.e., macroprogramming). DRN provides programming simplicity, expressiveness, tunability, on-the-fly reprogrammability, and in-network data aggregation for energy savings. None of existing macroprogramming paradigms supports all of the mentioned features. Furthermore, DRN is an integration of declarative and imperative programming. The low-level details are declaratively abstracted out, but the main algorithm remains procedural. This allows programming simplicity without an adverse impact on the expressiveness. We have implemented and evaluated DRN on two platforms: Smart Message and Maté. Our result indicates that DRN enables programmers to develop energy-efficient applications with the desired flexibility and quality.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom