z-logo
open-access-imgOpen Access
Crossing at a Red Light: Behavior of Cyclists at Urban Intersections
Author(s) -
Xiaobao Yang,
Mei Huan,
Bingfeng Si,
Liang Gao,
Hongwei Guo
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/490810
Subject(s) - duration (music) , red light , computer science , hazard , traffic signal , statistics , transport engineering , simulation , mathematics , real time computing , physics , engineering , chemistry , botany , organic chemistry , acoustics , biology
To investigate the relationship between cyclist violation and waiting duration, the red-light running behavior of nonmotorized vehicles is examined at signalized intersections. Violation waiting duration is collected by video cameras and it is assigned as censored and uncensored data to distinguish between normal crossing and red-light running. A proportional hazard-based duration model is introduced, and variables revealing personal characteristics and traffic conditions are used to describe the effects of internal and external factors. Empirical results show that the red-light running behavior of cyclist is time dependent. Cyclist’s violating behavior represents positive duration dependence, that the longer the waiting time elapsed, the more likely cyclists would end the wait soon. About 32% of cyclists are at high risk of violation and low waiting time to cross the intersections. About 15% of all the cyclists are generally nonrisk takers who can obey the traffic rules after waiting for 95 seconds. The human factors and external environment play an important role in cyclists’ violation behavior. Minimizing the effects of unfavorable condition in traffic planning and designing may be an effective measure to enhance traffic safety

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom