Modal Resonant Frequencies and Radiation Quality Factors of Microstrip Antennas
Author(s) -
Jan Eichler,
Pavel Hazdra,
Miloslav Čapek,
Miloš Mazánek
Publication year - 2012
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2012/490327
Subject(s) - algorithm , antenna (radio) , modal , ground plane , physics , mathematics , geometry , computational physics , topology (electrical circuits) , computer science , telecommunications , materials science , combinatorics , polymer chemistry
The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of characteristic modes. The resonant frequencies and radiation Q are evaluated. A novel method by Vandenbosch for rigorous evaluation of the radiation Q is employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the resonant frequency of a rectangular patch antenna with a dominant mode presents quite complicated behaviour including having a minimum at a specific height. Similarly, as predicted from the simple wire model, the radiation Q exhibits a minimum too. It is observed that the presence of out-of-phase currents flowing along the patch antenna leads to a significant increase of the Q factor
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom