Monotonic Positive Solutions of Nonlocal Boundary Value Problems for a Second-Order Functional Differential Equation
Author(s) -
A. M. A. ElSayed,
Eman M. A. Hamdallah,
Kh. W. Elkadeky
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/489353
Subject(s) - monotonic function , mathematics , boundary value problem , order (exchange) , mathematical analysis , functional differential equation , differential equation , value (mathematics) , mathematical physics , statistics , finance , economics
We study the existence of at least one monotonic positive solution for the nonlocal boundary value problem of the second-order functional differential equation x′′(t)=f(t,x(ϕ(t))), t∈(0,1), with the nonlocal condition ∑k=1makx(τk)=x0, x′(0)+∑j=1nbjx′(ηj)=x1, where τk∈(a,d)⊂(0,1), ηj∈(c,e)⊂(0,1), and x0,x1>0. As an application the integral and the nonlocal conditions ∫adx(t)dt=x0, x′(0)+x(e)-x(c)=x1 will be considered
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom