Mixed Modeling with Whole Genome Data
Author(s) -
Jing Hua Zhao,
Jian’an Luan
Publication year - 2012
Publication title -
journal of probability and statistics
Language(s) - English
Resource type - Journals
eISSN - 1687-9538
pISSN - 1687-952X
DOI - 10.1155/2012/485174
Subject(s) - polygene , covariate , population , relation (database) , computer science , data mining , quantitative trait locus , machine learning , medicine , environmental health
Objective. We consider the need for a modeling framework for related individuals and various sources of variations. The relationships could either be among relatives in families or among unrelated individuals in a general population with cryptic relatedness; both could be refined or derived with whole genome data. As with variations they can include oliogogenes, polygenes, single nucleotide polymorphism (SNP), and covariates. Methods. We describe mixed models as a coherent theoretical framework to accommodate correlations for various types of outcomes in relation to many sources of variations. The framework also extends to consortium meta-analysis involving both population-based and family-based studies. Results. Through examples we show that the framework can be furnished with general statistical packages whose great advantage lies in simplicity and exibility to study both genetic and environmental effects. Areas which require further work are also indicated. Conclusion. Mixed models will play an important role in practical analysis of data on both families and unrelated individuals when whole genome information is available
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom