Learning to Translate: A Statistical and Computational Analysis
Author(s) -
Marco Turchi,
Tijl De Bie,
Cyril Goutte,
Nello Cristianini
Publication year - 2012
Publication title -
advances in artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 1687-7489
pISSN - 1687-7470
DOI - 10.1155/2012/484580
Subject(s) - computer science , phrase , zipf's law , machine translation , algorithmic learning theory , artificial intelligence , inference , natural language processing , statistical inference , machine learning , point (geometry) , active learning (machine learning) , mathematics , statistics , geometry
We present an extensive experimental study of Phrase-based Statistical Machine Translation, from the point of view of its learning capabilities. Very accurate Learning Curves are obtained, using high-performance computing, and extrapolations of the projected performance of the system under different conditions are provided. Our experiments confirm existing and mostly unpublished beliefs about the learning capabilities of statistical machine translation systems. We also provide insight into the way statistical machine translation learns from data, including the respective influence of translation and language models, the impact of phrase length on performance, and various unlearning and perturbation analyses. Our results support and illustrate the fact that performance improves by a constant amount for each doubling of the data, across different language pairs, and different systems. This fundamental limitation seems to be a direct consequence of Zipf law governing textual data. Although the rate of improvement may depend on both the data and the estimation method, it is unlikely that the general shape of the learning curve will change without major changes in the modeling and inference phases. Possible research directions that address this issue include the integration of linguistic rules or the development of active learning procedures
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom