Effectiveness of Partition and Graph Theoretic Clustering Algorithms for Multiple Source Partial Discharge Pattern Classification Using Probabilistic Neural Network and Its Adaptive Version: A Critique Based on Experimental Studies
Author(s) -
S. Venkatesh,
S. Gopal,
K. Kannan
Publication year - 2012
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2012/479696
Subject(s) - cluster analysis , probabilistic logic , hypergraph , computer science , partition (number theory) , artificial neural network , data mining , algorithm , weibull distribution , statistical classification , artificial intelligence , pattern recognition (psychology) , learning vector quantization , machine learning , mathematics , statistics , discrete mathematics , combinatorics
Partial discharge (PD) is a major cause of failure of power apparatus and hence its measurement and analysis have emerged as a vital field in assessing the condition of the insulation system. Several efforts have been undertaken by researchers to classify PD pulses utilizing artificial intelligence techniques. Recently, the focus has shifted to the identification of multiple sources of PD since it is often encountered in real-time measurements. Studies have indicated that classification of multi-source PD becomes difficult with the degree of overlap and that several techniques such as mixed Weibull functions, neural networks, and wavelet transformation have been attempted with limited success. Since digital PD acquisition systems record data for a substantial period, the database becomes large, posing considerable difficulties during classification. This research work aims firstly at analyzing aspects concerning classification capability during the discrimination of multisource PD patterns. Secondly, it attempts at extending the previous work of the authors in utilizing the novel approach of probabilistic neural network versions for classifying moderate sets of PD sources to that of large sets. The third focus is on comparing the ability of partition-based algorithms, namely, the labelled (learning vector quantization) and unlabelled (K-means) versions, with that of a novel hypergraph-based clustering method in providing parsimonious sets of centers during classification
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom