z-logo
open-access-imgOpen Access
Through the Looking Glass: Visualizing Leukemia Growth, Migration, and Engraftment Using Fluorescent Transgenic Zebrafish
Author(s) -
Finola E. Moore,
David M. Langenau
Publication year - 2012
Publication title -
advances in hematology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 31
eISSN - 1687-9112
pISSN - 1687-9104
DOI - 10.1155/2012/478164
Subject(s) - zebrafish , transgene , leukemia , cancer research , cancer , cancer cell , biology , transplantation , green fluorescent protein , stem cell , gene , computational biology , microbiology and biotechnology , medicine , genetics , surgery
Zebrafish have emerged as a powerful model of development and cancer. Human, mouse, and zebrafish malignancies exhibit striking histopathologic and molecular similarities, underscoring the remarkable conservation of genetic pathways required to induce cancer. Zebrafish are uniquely suited for large-scale studies in which hundreds of animals can be used to investigate cancer processes. Moreover, zebrafish are small in size, optically clear during development, and amenable to genetic manipulation. Facile transgenic approaches and new technologies in gene inactivation have provided much needed genomic resources to interrogate the function of specific oncogenic and tumor suppressor pathways in cancer. This manuscript focuses on the unique attribute of labeling leukemia cells with fluorescent proteins and directly visualizing cancer processes in vivo including tumor growth, dissemination, and intravasation into the vasculature. We will also discuss the use of fluorescent transgenic approaches and cell transplantation to assess leukemia-propagating cell frequency and response to chemotherapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom