z-logo
open-access-imgOpen Access
Dynamic Modeling and Analysis of the Email Virus Propagation
Author(s) -
Yihong Li,
Jinxiao Pan,
Zhen Jin
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/472072
Subject(s) - bifurcation , bistability , stability theory , lyapunov function , basic reproduction number , node (physics) , stability (learning theory) , saddle , mathematics , basis (linear algebra) , function (biology) , computer science , statistical physics , mathematical optimization , physics , nonlinear system , population , demography , geometry , quantum mechanics , machine learning , evolutionary biology , sociology , biology
A novel deterministic SEIS model for the transmission of email viruses in growing communication networks is formulated. Interestingly, the model is different from classical SEIS models not only in the form, but also in the dynamical features. We study the equilibria and their stability and analyse the bifurcation dynamics of the model. In particular, we find that the virus-free equilibrium is locally asymptotically stable for any parameter values, which may attribute to the absence of the basic reproduction number. It is shown that the model undergoes a saddle-node bifurcation and admits the bistable phenomenon. Moreover, on the basis of the Lyapunov function, the domains of attraction of equilibria are estimated by solving an LMI optimization problem. Based on the above theoretical results, some effective strategies are also provided to control the propagation of the email viruses. Additionally, our results are confirmed by numerical simulations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom