z-logo
open-access-imgOpen Access
Regularization in Retrieval-Driven Classification of Clustered Microcalcifications for Breast Cancer
Author(s) -
Hao Jing,
Yongyi Yang,
Robert M. Nishikawa
Publication year - 2012
Publication title -
international journal of biomedical imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.626
H-Index - 41
eISSN - 1687-4196
pISSN - 1687-4188
DOI - 10.1155/2012/463408
Subject(s) - breast cancer , computer science , regularization (linguistics) , data mining , bi rads , information retrieval , mammography , medicine , cancer , artificial intelligence
We propose a regularization based approach for case-adaptive classification in computer-aided diagnosis (CAD) of breast cancer. The goal is to improve the classification accuracy on a query case by making use of a set of similar cases retrieved from an existing library of known cases. In the proposed approach, a prior is first derived from a traditional CAD classifier (which is typically pre-trained offline on a set of training cases). It is then used together with the retrieved similar cases to obtain an adaptive classifier on the query case. We consider two different forms for the regularization prior: one is fixed for all query cases and the other is allowed to vary with different query cases. In the experiments the proposed approach is demonstrated on a dataset of 1,006 clinical cases. The results show that it could achieve significant improvement in numerical efficiency compared with a previously proposed case adaptive approach (by about an order of magnitude) while maintaining similar (or better) improvement in classification accuracy; it could also adapt faster in performance with a small number of retrieved cases. Measured by the area of under the ROC curve (AUC), the regularization based approach achieved AUC = 0.8215, compared with AUC = 0.7329 for the baseline classifier ( P -value = 0.001).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom