Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10%Efficiency by Design Optimization
Author(s) -
Mohammed Ikbal Kabir,
Seyed Ahmad Shahahmadi,
Victor Lim,
Saleem H. Zaidi,
Kamaruzzaman Sopian,
Nowshad Amin
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/460919
Subject(s) - amorphous silicon , materials science , solar cell , microelectronics , plasma enhanced chemical vapor deposition , fabrication , optoelectronics , amorphous solid , energy conversion efficiency , chemical vapor deposition , crystalline silicon , chemistry , crystallography , medicine , alternative medicine , pathology
The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures) simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H) have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition), where the best initial conversion efficiency of 10.02% has been achieved ( V, mA/cm2 and ) for a small area cell (0.086 cm2). The quantum efficiency (QE) characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom