Flexural Behavior of Extruded DFRCC Panel and Reinforced Concrete Composite Slab
Author(s) -
ChangGeun Cho,
Bang Yeon Lee,
Yun-Yong Kim,
Byung-Chan Han,
Seung-Jung Lee
Publication year - 2012
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2012/460541
Subject(s) - materials science , slab , flexural strength , composite number , cracking , composite material , extrusion , structural engineering , bending , stiffness , engineering
This paper presents a new reinforced concrete (RC) composite slab system by applying an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel. In the proposed composite slab system, the DFRCC panel, which has ribs to allow for complete composite action, is manufactured by extrusion process; then, the longitudinal and transverse reinforcements, both at the bottom and the top, are placed, and finally the topping concrete is placed. In order to investigate the flexural behavior of the proposed composite slab system, a series of bending tests was performed. From the test results, it was found that the extruded DFRCC panel has good deformation-hardening behavior under flexural loading conditions and that the developed composite slab system, applied with an extruded DFRCC panel, exhibits higher flexural performance compared to conventional RC slab system in terms of the stiffness, load-bearing capacity, ductility, and cracking control
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom