z-logo
open-access-imgOpen Access
On a Nonsmooth Vector Optimization Problem with Generalized Cone Invexity
Author(s) -
Jiao He-hua,
Sanyang Liu
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/458983
Subject(s) - mathematics , cone (formal languages) , duality (order theory) , converse , dual cone and polar cone , pure mathematics , optimization problem , mathematical analysis , mathematical optimization , geometry , regular polygon , algorithm
By using Clarke’s generalized gradients we consider a nonsmooth vector optimization problem with cone constraints and introduce some generalized cone-invex functions called K-α-generalized invex, K-α-nonsmooth invex, and other related functions. Several sufficient optimality conditions and Mond-Weir type weak and converse duality results are obtained for this problem under the assumptions of the generalized cone invexity. The results presented in this paper generalize and extend the previously known results in this area

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom