Photophysical Parameters, Excitation Energy Transfer, and Photoreactivity of 1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) Laser Dye
Author(s) -
Samy A. ElDaly,
Saleh Abd Elazim,
F. El-Mekawey,
Bahgat Y. Elbaradei,
S. A. Shama,
Abdullah M. Asiri
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/458126
Subject(s) - dye laser , analytical chemistry (journal) , chemistry , excited state , emission spectrum , fluorescence , laser , photochemistry , amplified spontaneous emission , spectral line , atomic physics , optics , physics , organic chemistry , astronomy
The effect of solvents on the absorption and emission spectra of 1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP) laser dye has been studied in various solvents at 298 K. A bathochromic shift was observed in absorption and fluorescence spectra upon increase of solvent polarity, which indicates that this transition is π-∗. The ground and excited state dipole moments were calculated as 2.23 and 6.34 Debye, respectively. The dye solution in MeOH, n-heptane, and methyl isobutyl ketone gives laser emission in the blue region upon excitation by a 337.1 nm nitrogen pulse; the gain coefficient and emission cross section as well as normalized photostability have been determined. Excitation energy transfer from POPOP to rhodamine B and fluorescine was studied to improve the laser emission from these dyes. Such an energy transfer dye laser system (ETDL) obeys a long range columbic energy transfer mechanism with a critical transfer distance, R0, of 25 and 33 Å and kq equal to 10.4×1012 and 26.2×1012M−1s−1 for the POPOP/RB and POPOP/fluorescine pair, respectively. The POPOP dye is highly photostable in polar protic and polar aprotic solvents, while it displays photodecomposition in chloromethane solvent via formation of a contact ion pair. The photochemical quantum yield and rate of photodecomposition depend on the electron affinity of solvent
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom