z-logo
open-access-imgOpen Access
Unsupervised Neural Techniques Applied to MR Brain Image Segmentation
Author(s) -
Andrés Ortíz,
J. M. Górriz,
Javier Ramı́rez,
D. SalasGonzalez
Publication year - 2012
Publication title -
advances in artificial neural systems
Language(s) - English
Resource type - Journals
eISSN - 1687-7608
pISSN - 1687-7594
DOI - 10.1155/2012/457590
Subject(s) - computer science , artificial intelligence , segmentation , image segmentation , pattern recognition (psychology) , voxel , grey matter , white matter , magnetic resonance imaging , computer vision , medicine , radiology
The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI) segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer’s disease (AD). Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM) as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR) outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the Nuclear Medicine Service of the “Virgen de las Nieves” Hospital (Granada, Spain)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom