Digital Augmented Reality Audio Headset
Author(s) -
Jussi Rämö,
Vesa Välimäki
Publication year - 2012
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2012/457374
Subject(s) - headphones , binaural recording , headset , computer science , equalization (audio) , virtual reality , loudspeaker , attenuation , augmented reality , audio signal processing , acoustics , digital audio , audio signal , computer hardware , speech recognition , digital signal processing , artificial intelligence , telecommunications , decoding methods , physics , optics
Augmented reality audio (ARA) combines virtual sound sources with the real sonic environment of the user. An ARA system can be realized with a headset containing binaural microphones. Ideally, the ARA headset should be acoustically transparent, that is, it should not cause audible modification to the surrounding sound. A practical implementation of an ARA mixer requires a low-latency headphone reproduction system with additional equalization to compensate for the attenuation and the modified ear canal resonances caused by the headphones. This paper proposes digital IIR filters to realize the required equalization and evaluates a real-time prototype ARA system. Measurements show that the throughput latency of the digital prototype ARA system can be less than 1.4 ms, which is sufficiently small in practice. When the direct and processed sounds are combined in the ear, a comb filtering effect is brought about and appears as notches in the frequency response. The comb filter effect in speech and music signals was studied in a listening test and it was found to be inaudible when the attenuation is 20 dB. Insert ARA headphones have a sufficient attenuation at frequencies above about 1 kHz. The proposed digital ARA system enables several immersive audio applications, such as a virtual audio tourist guide and audio teleconferencing
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom