z-logo
open-access-imgOpen Access
A Smoothing Interval Neural Network
Author(s) -
Dakun Yang,
Wei Wu
Publication year - 2012
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2012/456919
Subject(s) - smoothing , interval (graph theory) , artificial neural network , convergence (economics) , computer science , oscillation (cell signaling) , algorithm , function (biology) , artificial intelligence , mathematics , combinatorics , evolutionary biology , biology , economics , computer vision , genetics , economic growth
In many applications, it is natural to use interval data to describe various kinds of uncertainties. This paper is concerned with an interval neural network with a hidden layer. For the original interval neural network, it might cause oscillation in the learning procedure as indicated in our numerical experiments. In this paper, a smoothing interval neural network is proposed to prevent the weights oscillation during the learning procedure. Here, by smoothing we mean that, in a neighborhood of the origin, we replace the absolute values of the weights by a smooth function of the weights in the hidden layer and output layer. The convergence of a gradient algorithm for training the smoothing interval neural network is proved. Supporting numerical experiments are provided

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom