On the Variational Eigenvalues Which Are Not of Ljusternik-Schnirelmann Type
Author(s) -
Pavel Drábek
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/434631
Subject(s) - mathematics , eigenvalues and eigenvectors , minimax , nonlinear system , focus (optics) , type (biology) , homogeneous , characterization (materials science) , mathematical analysis , pure mathematics , mathematical optimization , combinatorics , ecology , physics , materials science , quantum mechanics , optics , biology , nanotechnology
We discuss nonlinear homogeneous eigenvalue problems and the variational characterization of their eigenvalues. We focus on the Ljusternik-Schnirelmann method, present one possible alternative to this method and compare it with the Courant-Fischer minimax principle in the linear case. At the end we present a special nonlinear eigenvalue problem possessing an eigenvalue which allows the variational characterization but is not of Ljusternik-Schnirelmann type
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom