z-logo
open-access-imgOpen Access
Homologue Pairing in Flies and Mammals: Gene Regulation When Two Are Involved
Author(s) -
Manasi S. Apte,
Victoria H. Meller
Publication year - 2011
Publication title -
genetics research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.351
H-Index - 9
eISSN - 2090-3154
pISSN - 2090-3162
DOI - 10.1155/2012/430587
Subject(s) - pairing , biology , germline , somatic cell , genetics , meiosis , gene , genome , context (archaeology) , chromosome , chromosome pairing , x chromosome , paleontology , physics , superconductivity , quantum mechanics
Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will contrast the role of pairing in transmitting information between homologues in flies and mammals. In mammals, somatic homologue pairing is tightly regulated, occurring at specific loci and in a developmentally regulated fashion. Inappropriate pairing, or loss of normal pairing, is associated with gene misregulation in some disease states. While homologue pairing in flies is capable of influencing gene expression, the significance of this for normal expression remains unknown. The sex chromosomes pose a particularly interesting situation, as females are able to pair X chromosomes, but males cannot. The contribution of homologue pairing to the biology of the X chromosome will also be discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom