Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
Author(s) -
YuMing Chu,
Shou-Wei Hou
Publication year - 2011
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/425175
Subject(s) - algorithm , computer science
We find the greatest value α and the least value β in (1/2,1) such that the double inequality C(αa+(1-α)b,αb+(1-α)a)0 with a≠b. Here, T(a,b)=(a-b)/[2 arctan((a-b)/(a+b))] and Ca,b=(a2+b2)/(a+b) are the Seiffert and contraharmonic means of a and b, respectively
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom