z-logo
open-access-imgOpen Access
Exponential Fields Formulation for WMR Navigation
Author(s) -
Edgar A. MartínezGarcía,
Rafael Torres-Córdoba
Publication year - 2012
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2012/418204
Subject(s) - motion planning , kinematics , computer science , cohesion (chemistry) , mobile robot , scheme (mathematics) , simulation , control engineering , control theory (sociology) , control (management) , robot , artificial intelligence , engineering , mathematics , mathematical analysis , chemistry , physics , organic chemistry , classical mechanics
In this manuscript, an autonomous navigation algorithm for wheeled mobile robots (WMR) operating in dynamic environments (indoors or structured outdoors) is formulated. The planning scheme is of critical importance for autonomous navigational tasks in complex dynamic environments. In fast dynamic environments, path planning needs algorithms able to sense simultaneously a diversity of obstacles, and use such sensory information to improve real-time navigation control, while moving towards a desired goal destination. The framework tackles 4 issues. 1) Reformulation of the Social Force Model (SFM) adapted to WMR; 2) the cohesion of a general inertial scheme to represents motion in any coordinate system; 3) control of actuators rotational speed as a general model regardless kinematic restrictions; 4) assuming detection of features (obstacles/goals), adaptive numeric weights are formulated to affect navigational exponential components. Simulation and experimental outdoors results are presented to show the feasibility of the proposed framework.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom