Exploiting Spatial and Frequency Diversity in Spatially Correlated MU-MIMO Downlink Channels
Author(s) -
Rosdiadee Nordin
Publication year - 2012
Publication title -
journal of computer networks and communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 23
eISSN - 2090-715X
pISSN - 2090-7141
DOI - 10.1155/2012/414796
Subject(s) - telecommunications link , computer science , subcarrier , diversity scheme , mimo , base station , transmission (telecommunications) , interference (communication) , channel (broadcasting) , antenna diversity , spatial correlation , bit error rate , electronic engineering , computer network , telecommunications , orthogonal frequency division multiplexing , wireless , engineering
The effect of self-interference due to the increase of spatial correlation in a MIMO channel has become one of the limiting factors towards the implementation of future network downlink transmissions. This paper aims to reduce the effect of self-interference in a downlink multiuser- (MU-) MIMO transmission by exploiting the available spatial and frequency diversity. The subcarrier allocation scheme can exploit the frequency diversity to determine the self-interference from the ESINR metric, while the spatial diversity can be exploited by introducing the partial feedback scheme, which offers knowledge of the channel condition to the base station and further reduces the effect before the allocation process takes place. The results have shown that the proposed downlink transmission scheme offers robust bit error rate (BER) performance, even when simulated in a fully correlated channel, without imposing higher feedback requirements on the base controller
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom