z-logo
open-access-imgOpen Access
Variations of the Game 3-Euclid
Author(s) -
Nhan Bao Ho
Publication year - 2012
Publication title -
international journal of combinatorics
Language(s) - English
Resource type - Journals
eISSN - 1687-9171
pISSN - 1687-9163
DOI - 10.1155/2012/406250
Subject(s) - integer (computer science) , mathematics , combinatorics , partition (number theory) , multiple , value (mathematics) , combinatorial game theory , discrete mathematics , game theory , mathematical economics , sequential game , computer science , arithmetic , statistics , programming language
We present two variations of the game 3-Euclid. The games involve a triplet of positive integers. Two players move alternately. In the first game, each move is to subtract a positive integer multiple of the smallest integer from one of the other integers as long as the result remains positive. In the second game, each move is to subtract a positive integer multiple of the smallest integer from the largest integer as long as the result remains positive. The player who makes the last move wins. We show that the two games have the same -positions and positions of Sprague-Grundy value 1. We present three theorems on the periodicity of -positions and positions of Sprague-Grundy value 1. We also obtain a theorem on the partition of Sprague-Grundy values for each game. In addition, we examine the misère versions of the two games and show that the Sprague-Grundy functions of each game and its misère version differ slightly

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom