A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory
Author(s) -
Xiaofang Hu,
Shukai Duan,
Lidan Wang
Publication year - 2012
Publication title -
abstract and applied analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.228
H-Index - 56
eISSN - 1687-0409
pISSN - 1085-3375
DOI - 10.1155/2012/405739
Subject(s) - memristor , neuromorphic engineering , content addressable memory , computer science , chaotic , artificial neural network , synapse , bidirectional associative memory , associative property , cmos , physical neural network , cellular neural network , artificial intelligence , topology (electrical circuits) , computer architecture , electronic engineering , recurrent neural network , mathematics , electrical engineering , engineering , types of artificial neural networks , neuroscience , pure mathematics , biology
Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that can be harnessed in promising engineering applications. However, due to its complex synapse learning rules and network structure, it is difficult to update its synaptic weights quickly and implement its large scale physical circuit. This paper addresses an implementation scheme of a novel CNN with memristive neural synapses that may provide a feasible solution for further development of CNN. Memristor, widely known as the fourth fundamental circuit element, was theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in Hewlett-Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has four significant features: (1) nanoscale memristors can simplify the synaptic circuit greatly and enable the synaptic weights update easily; (2) it can separate stored patterns from superimposed input; (3) it can deal with one-to-many associative memory; (4) it can deal with many-to-many associative memory. Simulation results are provided to illustrate the effectiveness of the proposed scheme
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom