z-logo
open-access-imgOpen Access
Effects of Homogenization Scheme ofTiO2Screen-Printing Paste for Dye-Sensitized Solar Cells
Author(s) -
Seigo Ito,
Kaoru Takahashi,
Shin-ich Yusa,
Takahiro Imamura,
Kenji Tanimoto
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/405642
Subject(s) - nanocrystalline material , photocurrent , materials science , dispersity , nanoparticle , dielectric spectroscopy , grinding , ball mill , spectroscopy , chemical engineering , analytical chemistry (journal) , nanotechnology , electrode , electrochemistry , optoelectronics , composite material , polymer chemistry , chromatography , chemistry , physics , quantum mechanics , engineering
TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs) using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM) route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2) and high photoconversion efficiency (8.27%). On the other hand, the TiO2 mortal-grinding (TiO2-MG) route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2) and low photoconversion efficiency (6.43%). To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom