z-logo
open-access-imgOpen Access
Fibre Optic Readout of Microcantilever Arrays for Fast Microorganism Growth Detection
Author(s) -
Niall Maloney,
Gergely L. Lukács,
Natalia Nugaeva,
Wilfried Grange,
J.-P. Ramseyer,
Jesper Rindom Jensen,
Martin Hegner
Publication year - 2011
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2012/405281
Subject(s) - cantilever , materials science , resonance (particle physics) , analytical chemistry (journal) , repeatability , chemistry , composite material , chromatography , physics , particle physics
We present a fibre-optic-based device for the automated readout of microcantilever arrays for fast microorganism growth detection. We determined the ability of our device to track shifts in resonance frequency due to an increase in mass on the cantilever surface or changes in mechanical stiffness. The resonance frequency response of 7 μm thick agarose-functionalised cantilevers was tracked as humidity levels were varied revealing a mass responsivity of ~51±1 pg/Hz. The resonance response of microcantilevers coated with Aspergillus niger (A. niger) spores was monitored for >48 h revealing a growth detection time of >4 h. The growth of mycelium along the cantilevers surface is seen to result in an increase in resonance frequency due to the reinforcement of the cantilever structure. The use of our fibre optic detection technique allows data to be recorded continuously and faster than previously reported

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom