The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans
Author(s) -
A. G. Sheard,
Alessandro Corsini
Publication year - 2012
Publication title -
international journal of rotating machinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.265
H-Index - 33
eISSN - 1026-7115
pISSN - 1023-621X
DOI - 10.1155/2012/402763
Subject(s) - stall (fluid mechanics) , aerodynamics , computer science , structural engineering , marine engineering , automotive engineering , aerospace engineering , engineering
This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom