z-logo
open-access-imgOpen Access
Experimental Testing of the Effects of Fine Particles on the Properties of the Self-Compacting Lightweight Concrete
Author(s) -
Sandra Juradin,
Goran Baloević,
Alen Harapin
Publication year - 2012
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2012/398567
Subject(s) - materials science , silica fume , compressive strength , composite material , fly ash , slump , filler (materials) , properties of concrete
The self-compacting lightweight concrete (SCLC) is a combination of the Self compacting concrete (SCC) and the Lightweight concrete. It combines all the good properties of those two materials and is extremely convenient for the construction of buildings that require low mass and do not require high compressive strength, for example restoration works in old structures (e.g., replacement of wooden floors), prefabricated elements that require transportation, and for structures and elements where the concrete surface should be visible. In this paper the effect of the amount of fine particles on the properties of the self-compacting lightweight concrete (SCLC) in the fresh and hardened state was explored. For this purpose, sets of specimens with different combinations of admixtures of silica fume, fly ash, and filler were prepared and tested. Slump flow and flow time of fresh concrete, as well as the dynamic elastic modulus and compressive strength of hardened concrete, were measured at different ages of concrete. The processes of manufacturing and methods of testing are described, as well as the obtained results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom