z-logo
open-access-imgOpen Access
Inhibition of Akt Attenuates RPO-Induced Cardioprotection
Author(s) -
Emma Katengua-Thamahane,
AnnaMart Engelbrecht,
Adriaan J. Esterhuyse,
Jacques van Rooyen
Publication year - 2012
Publication title -
cardiology research and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 35
eISSN - 2090-8016
pISSN - 2090-0597
DOI - 10.1155/2012/392457
Subject(s) - cardioprotection , protein kinase b , phosphorylation , medicine , perfusion , blockade , pi3k/akt/mtor pathway , pharmacology , ischemia , signal transduction , microbiology and biotechnology , biology , receptor
Previous studies have shown that red palm oil (RPO) supplementation protected rat hearts against ischaemia-reperfusion injury. Evidence from these studies suggested that Akt may be partly responsible for the observed protection. The aim of the current study was therefore to prove or refute the involvement of Akt in the RPO-induced cardioprotection by administration of a specific Akt inhibitor (A6730). Male Wistar rats were randomly divided into 2 groups: a control group receiving standard rat chow and an experimental group receiving standard rat chow plus 2 mL RPO for six weeks. Hearts were excised and mounted on the Langendorff perfusion system. Functional recovery was documented. A different set of hearts were freeze-clamped to assess total and phosphorylation status of Akt. Another set of hearts were subjected to the same perfusion conditions with addition of A6730. Hearts from this protocol were freeze-clamped and assessed for total and phospho-Akt. RPO improved functional recovery which was associated with increased phosphorylation of Akt on Ser473 and Thr308 residues. Blockade of Akt phosphorylation caused poor functional recovery. For the first time, these results prove that Akt plays an important role in the RPO-induced cardioprotection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom