z-logo
open-access-imgOpen Access
Developing a Fuzzy Logic Based on Demand Multicast Routing Protocol
Author(s) -
Alireza Shams Shafigh,
Kamran Abdollahi,
Marjan Kouchaki
Publication year - 2012
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2012/389812
Subject(s) - computer network , computer science , protocol independent multicast , multicast , distributed computing , distance vector multicast routing protocol , flooding (psychology) , xcast , zone routing protocol , dsrflow , dynamic source routing , routing protocol , source specific multicast , wireless routing protocol , network packet , psychology , psychotherapist
Multicast routing is an efficient method to lead data packets from one source group to several nodes as destination group. Although multicast routing algorithms could be efficient in many situations but their routing mechanism like as route request flooding packets likely results in poor performance in comparison to unicast routing algorithms. In this research, two efficient methods are proposed to improve the performance of On Demand Multicast Routing Protocol (ODMRP). The main proposed method tries to establish a small, efficient, and high-quality forwarding group. This is achieved by augmenting the Join Query packets with additional information such as speed, power level of node, and link bandwidths. Besides, the control overhead is further reduced by restricting the domain of control packet flooding (by restricting the domain of control packet flooding). The performance evaluation shows that the proposed scheme increases the packet delivery rate by up to 40%, while reducing average end-to-end delay and consumed power by about 35% and 45%, respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom