z-logo
open-access-imgOpen Access
Application of Neuro-Wavelet Algorithm in Ultrasonic-Phased Array Nondestructive Testing of Polyethylene Pipelines
Author(s) -
Reza Bohlouli,
Babak Rostami,
Jafar Keighobadi
Publication year - 2012
Publication title -
journal of control science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 18
eISSN - 1687-5257
pISSN - 1687-5249
DOI - 10.1155/2012/389690
Subject(s) - nondestructive testing , ultrasonic sensor , wavelet , pipeline transport , phased array , phased array ultrasonics , wavelet transform , computer science , feature (linguistics) , image processing , artificial intelligence , computer vision , acoustics , engineering , image (mathematics) , mechanical engineering , medicine , telecommunications , linguistics , philosophy , physics , antenna (radio) , radiology
Polyethylene (PE) pipelines with electrofusion (EF) joining is an essential method of transportation of gas energy. EF joints are weak points for leakage and therefore, Nondestructive testing (NDT)methods including ultrasonic array technology are necessary. This paper presents a practical NDT method of fusion joints of polyethylene piping using intelligent ultrasonic image processing techniques. In the proposed method, to detect the defects of electrofusion joints, the NDT is applied based on an ANN-Wavelet method as a digital image processing technique. The proposed approach includes four steps. First an ultrasonic-phased array technique is used to provide real time images of high resolution. In the second step, the images are preprocessed by digital image processing techniques for noise reduction and detection of ROI (Region of Interest). Furthermore, to make more improvement on the images, mathematical morphology techniques such as dilation and erosion are applied. In the 3rd step, a wavelet transform is used to develop a feature vector containing 3-dimensional information on various types of defects. In the final step, all the feature vectors are classified through a backpropagation-based ANN algorithm. The obtained results show that the proposed algorithms are highly reliable and also precise for NDT monitoring.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom