Oxidative Stress and Mitochondrial Dysfunction in Down’s Syndrome: Relevance to Aging and Dementia
Author(s) -
Pınar Coşkun,
Jorge Busciglio
Publication year - 2012
Publication title -
current gerontology and geriatrics research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.564
H-Index - 28
eISSN - 1687-7071
pISSN - 1687-7063
DOI - 10.1155/2012/383170
Subject(s) - medicine , oxidative stress , context (archaeology) , down syndrome , dementia , disease , trisomy , bioinformatics , population , gerontology , phenotype , genetics , gene , biology , psychiatry , environmental health , paleontology
Genome-wide gene deregulation and oxidative stress appear to be critical factors determining the high variability of phenotypes in Down's syndrome (DS). Even though individuals with trisomy 21 exhibit a higher survival rate compared to other aneuploidies, most of them die in utero or early during postnatal life. While the survivors are currently predicted to live past 60 years, they suffer higher incidence of age-related conditions including Alzheimer's disease (AD). This paper is centered on the mechanisms by which mitochondrial factors and oxidative stress may orchestrate an adaptive response directed to maintain basic cellular functions and survival in DS. In this context, the timing of therapeutic interventions should be carefully considered for the successful treatment of chronic disorders in the DS population.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom