z-logo
open-access-imgOpen Access
Nanoscale Plasmonic Devices Based on Metal-Dielectric-Metal Stub Resonators
Author(s) -
Yin Huang,
Changjun Min,
Yang Liu,
Georgios Veronis
Publication year - 2012
Publication title -
international journal of optics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.263
H-Index - 17
eISSN - 1687-9392
pISSN - 1687-9384
DOI - 10.1155/2012/372048
Subject(s) - stub (electronics) , plasmon , resonator , nanoscopic scale , optoelectronics , dielectric , materials science , optics , physics , nanotechnology , electronic engineering , engineering
We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM) stub resonators for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures consist of a MDM waveguide side-coupled to periodic arrays of MDM stub resonators. We then introduce absorption switches consisting of a MDM plasmonic waveguide side-coupled to a MDM stub resonator filled with an active material.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom