In VitroSelection of Fab Fragments by mRNA Display and Gene-Linking Emulsion PCR
Author(s) -
Takeshi Sumida,
Hiroshi Yanagawa,
Nobuhide Doi
Publication year - 2012
Publication title -
journal of nucleic acids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.621
H-Index - 32
eISSN - 2090-021X
pISSN - 2090-0201
DOI - 10.1155/2012/371379
Subject(s) - in vitro , messenger rna , selection (genetic algorithm) , gene , computational biology , microbiology and biotechnology , genetics , bioinformatics , biology , computer science , medicine , artificial intelligence
In vitro selection by display methods has been an effective tool for engineering recombinant antibodies. mRNA display based on a cell-free translation system has the advantages of larger library sizes and quicker selection procedures compared with cell-based display methods such as phage display. However, mRNA display has been limited to select single-chain polypeptides such as scFvs due to its characteristic of linking a nascent polypeptide with its encoding mRNA on the ribosome. Here we demonstrated a new way of selecting heterodimeric Fab fragments by using mRNA display combined with emulsion PCR. We designed a pair of complementary 5′ UTR sequences that can link the Fab heavy and light chain genes together by overlap-extension PCR in water-in-oil emulsions. We confirmed that two mRNA-displayed polypeptides for heavy and light chain of a model Fab fragment were associated into the active form and that a specific Fab fragment gene was enriched over 100-fold per round of a model affinity selection followed by the gene-linking emulsion PCR. We further performed directed evolution of Fab fragments with higher binding activity from a randomized Fab fragment library.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom