z-logo
open-access-imgOpen Access
A Hybrid Model through the Fusion of Type-2 Fuzzy Logic Systems and Sensitivity-Based Linear Learning Method for Modeling PVT Properties of Crude Oil Systems
Author(s) -
Ali Selamat,
Sunday O. Olatunji,
Abdul Azeez Abdul Raheem
Publication year - 2012
Publication title -
advances in fuzzy systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 19
eISSN - 1687-711X
pISSN - 1687-7101
DOI - 10.1155/2012/359429
Subject(s) - computer science , sensitivity (control systems) , relation (database) , fuzzy logic , consistency (knowledge bases) , type (biology) , hybrid system , stability (learning theory) , artificial intelligence , data mining , machine learning , engineering , ecology , electronic engineering , biology
Sensitivity-based linear learning method (SBLLM) has recently been used as a predictive tool due to its unique characteristics and performance, particularly its high stability and consistency during predictions. However, the generalisation capability of SBLLM is sometimes limited depending on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not. Since it made use of sensitivity analysis in relation to the data sets used, it is surely very prone to being affected by the nature of the dataset. In order to reduce the effects of uncertainties in SBLLM prediction and improve its generalisation ability, this paper proposes a hybrid system through the unique combination of type-2 fuzzy logic systems (type-2 FLSs) and SBLLM; thereafter the hybrid system was used to model PVT properties of crude oil systems. Type-2 FLS has been choosen in order to better handle uncertainties existing in datasets beyond the capability of type-1 fuzzy logic systems. In the proposed hybrid, the type-2 FLS is used to handle uncertainties in reservoir data so that the cleaned data from type-2 FLS is then passed to the SBLLM for training and then final prediction using testing dataset follows. Comparative studies have been carried out to compare the performance of the newly proposed T2-SBLLM hybrid system with each of the constituent type-2 FLS and SBLLM. Empirical results from simulation show that the proposed T2-SBLLM hybrid system has greatly improved upon the performance of SBLLM, while also maintaining a better performance above that of the type-2 FLS

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom