z-logo
open-access-imgOpen Access
Investigation of the Relationship between Reverse Current of Crystalline Silicon Solar Cells and Conduction of Bypass Diode
Author(s) -
Hong Yang,
He Wang,
Minqiang Wang
Publication year - 2012
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2012/357218
Subject(s) - monocrystalline silicon , crystalline silicon , materials science , silicon , diode , optoelectronics , quantum dot solar cell , theory of solar cells , solar cell , current (fluid) , polymer solar cell , electrical engineering , engineering
In the process of crystalline silicon solar cells production, there exist some solar cells whose reverse current is larger than 1.0 A because of silicon materials and process. If such solar cells are encapsulated into solar modules, hot-spot phenomenon will emerge in use. In this paper, the effect of reverse current on reliability of crystalline silicon solar modules was investigated. Based on the experiments, considering the different shaded rate of cells, the relation between reverse current of crystalline silicon solar cells and conduction of bypass diode was investigated for the first time. To avoid formation of hot spots and failure of solar modules, the reverse current should be smaller than 1.0 A for 125 mm × 125 mm monocrystalline silicon solar cells when the bias voltage is at −12 V

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom