A Multivariate Auto-Regressive Method to Estimate Cortico-Muscular Coherence for the Detection of Movement Intent
Author(s) -
Giacomo Severini,
Silvia Conforto,
Maurizio Schmid,
Tommaso D’Alessio
Publication year - 2012
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2012/353272
Subject(s) - coherence (philosophical gambling strategy) , anticipation (artificial intelligence) , computer science , electroencephalography , movement (music) , multivariate statistics , electromyography , brain–computer interface , artificial intelligence , speech recognition , physical medicine and rehabilitation , pattern recognition (psychology) , psychology , machine learning , mathematics , statistics , neuroscience , medicine , acoustics , physics
In this work a time-frequency approach to estimate the Cortico-Muscular Coherence for the detection of the movement intent is presented, assessed on simulated data, and evaluated experimentally during different motor tasks performed by healthy subjects and patients suffering from different types of tremor. Cortico-Muscular Coherence is an index of the coupling of EEG signal in the cortical area with sEMG activity in the frequency domain, and its contributions in the beta band (15–30 Hz) have been associated to the movement intent. Cortico-Muscular Coherence estimation is here achieved by considering a closed-loop representation of the signals under analysis obtained through Multivariate Auto Regressive modeling. Significance levels for Cortico-Muscular Coherence are assessed by means of a surrogate data analysis approach. The detection technique is able to reveal significant Cortico-Muscular Coherence changes in 79% of the experimental trials, with a mean anticipation of 1.35 s with respect to movement onset. Time-frequency estimation of Cortico-Muscular Coherence can provide an insight for the development of a multimodal BCI able to integrate information from the brain activity in the functioning of assistive devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom