EFD and CFD Characterization of a CLT Propeller
Author(s) -
Daniele Bertetta,
Stefano Brizzolara,
Edward Canepa,
Stefano Gaggero,
Michele Viviani
Publication year - 2012
Publication title -
international journal of rotating machinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.265
H-Index - 33
eISSN - 1026-7115
pISSN - 1023-621X
DOI - 10.1155/2012/348939
Subject(s) - propeller , wake , thrust , computational fluid dynamics , cavitation , solver , vortex , marine engineering , torque , numerical analysis , propulsive efficiency , aerospace engineering , computer science , engineering , acoustics , mechanics , physics , mathematics , mathematical analysis , thermodynamics , programming language
In the present paper an experimental and numerical analysis of an unconventional CLT propeller is carried out. Two different numerical approaches, a potential panel method and an RANSE solver, are employed. Cavitation tunnel experiments are carried out in order to measure, as usual, thrust, torque, and cavity extension for different propeller working points. Moreover, LDV measurements are performed to have a deep insight into the complex wake behind the propeller and to analyze the dynamics of generated tip vortexes. The numerical/experimental analysis and comparison of results highlight the peculiarities of this kind of propellers, the possibility to increase efficiency and reduce cavitation risk, in order to exploit the design approaches already well proven for conventional propellers also in the case of these unconventional geometries
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom