z-logo
open-access-imgOpen Access
Electronic Structure of Hydrogenated and Surface-Modified GaAs Nanocrystals: Ab Initio Calculations
Author(s) -
Hamsa Naji Nasir,
Mudar Ahmed Abdulsattar,
Hayder M. Abduljalil
Publication year - 2012
Publication title -
advances in condensed matter physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.314
H-Index - 26
eISSN - 1687-8124
pISSN - 1687-8108
DOI - 10.1155/2012/348254
Subject(s) - ab initio , nanocrystal , materials science , band gap , density functional theory , electronic structure , valence (chemistry) , electronic band structure , ab initio quantum chemistry methods , surface energy , molecular physics , chemical physics , condensed matter physics , nanotechnology , computational chemistry , chemistry , physics , quantum mechanics , molecule , optoelectronics , composite material
Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom